Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Spermatogenesis is the process through which mature male gametes are formed and is necessary for the transmission of genetic information. While much work has established how sperm fate is promoted and maintained, less is known about how the sperm morphogenesis program is executed. We previously identified a novel role for the nuclear hormone receptor transcription factor, NHR-23, in promoting Caenorhabditis elegans spermatogenesis. The depletion of NHR-23 along with SPE-44, another transcription factor that promotes spermatogenesis, caused additive phenotypes. Through RNA-seq, we determined that NHR-23 and SPE-44 regulate distinct sets of genes. The depletion of both NHR-23 and SPE-44 produced yet another set of differentially regulated genes. NHR-23-regulated genes are enriched in phosphatases, consistent with the switch from genome quiescence to post-translational regulation in spermatids. In the parasitic nematode Ascaris suum, MFP1 and MFP2 control the polymerization of Major Sperm Protein, the molecule that drives sperm motility and serves as a signal to promote ovulation. NHR-23 and SPE-44 regulate several MFP2 paralogs, and NHR-23 depletion from the male germline caused defective localization of MSD/MFP1 and NSPH-2/MFP2. Although NHR-23 and SPE-44 do not transcriptionally regulate the casein kinase gene spe-6, a key regulator of sperm development, SPE-6 protein is lost following NHR-23+SPE-44 depletion. Together, these experiments provide the first mechanistic insight into how NHR-23 promotes spermatogenesis and an entry point to understanding the synthetic genetic interaction between nhr-23 and spe-44.more » « less
-
null (Ed.)In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered NHR-23/NR1F1 is also constitutively expressed in developing 1° spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles (MOs) but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.more » « less
-
Greenstein, D (Ed.)Abstract The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion.more » « less
-
Background Macelognathus vagans Marsh, 1884 from the Late Jurassic Morrison Fm. of Wyoming was originally described as a dinosaur by Marsh and in 1971 Ostrom suggested crocodilian affinities. In 2005, Göhlich and collaborators identified new material of this species from Colorado as a basal crocodylomorph. However, a partial skull found in association with mandibular and postcranial remains was not described. Methods Due to the small size and delicate structures within the braincase, micro CT studies were performed on this specimen. The new anatomical information was incorporated in a phylogenetic dataset, expanding both character and taxon sampling. Results This new material reinforces the non-crocodyliform crocodylomorph affinities of Macelognathus as it bears a large otic aperture, unfused frontals and lacks ornamentation on the dorsal cranial bones. The internal structures also support these affinities as this specimen bears traits (i.e., heavily pneumatized and expanded basisphenoid; the presence of additional pneumatic features on the braincase; and the otoccipital-quadrate contact) not present in most basal crocodylomorphs. Furthermore, the presence of a wide supraoccipital and a cranioquadrate passage are traits shared with Almadasuchus from the early Late Jurassic of Argentina. Macelognathus was recovered as one of the closest relatives of crocodyliforms, forming a clade (Hallopodidae) with two other Late Jurassic taxa ( Almadasuchus and Hallopus ). Discussion The clade formed by Almadasuchus + Hallopus + Macelognathus , the Hallopodidae, is characterized by a higher degree of suturing of the braincase, posteriorly closed otic aperture (paralleled in mesoeucrocodylians) and cursorial adaptations. Also, the phylogenetic position of this lineage of derived crocodylomorphs as the sister group of Crocodyliformes implies a large amount of unsampled record (ghost lineage), at least 50 million years.more » « less
-
Abstract Almadasuchus figariiis a basal crocodylomorph recovered from the Upper Jurassic levels of the Cañadón Calcáreo Formation (Oxfordian–Tithonian) of Chubut, Argentina. This taxon is represented by cranial remains, which consist of partial snout and palatal remains; an excellently preserved posterior region of the skull; and isolated postcranial remains. The skull of the only specimen of the monotypicAlmadasuchuswas restudied using high‐resolution computed micro tomography.Almadasuchushas an apomorphic condition in its skull shared with the closest relatives of crocodyliforms (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal carotids) on the occipital surface of the skull. The endocast is tubular, as previously reported in thalattosuchians, but has a marked posterior step, and a strongly projected floccular recess as in other basal crocodylomorphs. Internally, the skull ofAlmadasuchusis heavily pneumatized, where different air cavities invade the bones of the suspensorium and braincase, both on its dorsal or ventral parts.Almadasuchushas a large basioccipital recess, which is formed by cavities that excavate the basioccipital and the posterior surface of the basisphenoid, and unlike other crocodylomorphs is connected with the basisphenoid pneumatizations. Ventral to the otic capsule, a pneumatic cavity surrounded by the otoccipital and basisphenoid is identified as the rhomboidal recess. The quadrate ofAlmadasuchusis highly pneumatized, being completely hollow, and the dorsal pneumatizations of the braincase are formed by the mastoid and facial antra, and a laterosphenoid cavity (trigeminal diverticulum). To better understand the origins of pneumatic features in living crocodylomorphs we studied cranial pneumaticity in the basal members of Crocodylomorpha and found that: (a) prootic pneumaticity may be a synapomorphy for the whole clade; (b) basisphenoid pneumaticity (pre‐, postcarotid and rostral recesses) is a derived feature among basal crocodylomorphs; (c) quadrate pneumatization is acquired later in the history of the group; and (d) the rhomboidal sinus is a shared derived trait of hallopodids and crocodyliforms. The marine thallatosuchians exhibit a reduction of the pneumaticity of the braincase and this reduction is evaluated considering the two phylogenetic positions proposed for the clade.more » « less
An official website of the United States government
